Federated Learning-Based Lightweight Two-Factor Authentication Framework with Privacy Preservation for Mobile Sink in the Social IoMT

Author:

Deebak B. D.1ORCID,Hwang Seong Oun1ORCID

Affiliation:

1. Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea

Abstract

The social Internet of Medical Things (S-IoMT) highly demands dependable and non-invasive device identification and authentication and makes data services more prevalent in a reliable learning system. In real time, healthcare systems consistently acquire, analyze, and transform a few operational intelligence into actionable forms through digitization to capture the sensitive information of the patient. Since the S-IoMT tries to distribute health-related services using IoT devices and wireless technologies, protecting the privacy of data and security of the device is so crucial in any eHealth system. To fulfill the design objectives of eHealth, smart sensing technologies use built-in features of social networking services. Despite being more convenient in its potential use, a significant concern is a security preventing potential threats and infringement. Thus, this paper presents a lightweight two-factor authentication framework (L2FAK) with privacy-preserving functionality, which uses a mobile sink for smart eHealth. Formal and informal analyses prove that the proposed L2FAK can resist cyberattacks such as session stealing, message modification, and denial of service, guaranteeing device protection and data integrity. The learning analysis verifies the features of the physical layer using federated learning layered authentication (FLLA) to learn the data characteristics by exploring the learning framework of neural networks. In the evaluation, the core scenario is implemented on the TensorFlow Federated framework to examine FLLA and other relevant mechanisms on two correlated datasets, namely, MNIST and FashionMNIST. The analytical results show that the proposed FLLA can analyze the protection of privacy features effectively in order to guarantee an accuracy ≈89.83% to 93.41% better than other mechanisms. Lastly, a real-time testbed demonstrates the significance of the proposed L2FAK in achieving better quality metrics, such as transmission efficiency and overhead ratio than other state-of-the-art approaches.

Funder

Ministry of Science and Information Communication Technology

Gachon University research fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference87 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3