Abstract
The response forecasting of in-service complex electronic systems remains a challenge due to its uncertainty. An AI-based adaptive surrogate modeling method, including offline and online learning procedures, is proposed in this research for different systems with significant variety. The offline learning aims to abstract the knowledge from the known information and represent it as root models. The in-service response is modeled by a linear combination of the online learning of these root models against the continuous new measurement. This research applies a performance measurement dataset of the UVLED modules with considerable deviation to verify the proposed method. Part of the datasets is selected to generate the root models by offline learning, and these root models are applied to the online learning procedures for the adaptive surrogate model (ASM) of the different systems. The results show that after approximately 10 online learning iterations, the ASM achieves the capability of predicting 1000 h of response.
Funder
National Science and Technology Council
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AI-assisted Design for Reliability: Review and Perspectives;2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2024-04-07