Cascade Direct Yaw Moment Control for an Independent Eight In-Wheel Motor-Driven Autonomous Vehicle

Author:

Tan SenqiORCID,Wang Yang,Cheng Wen,Luo Tian,Zhang Naisi,Li Shengfei,Pan Bo,Cui Xing

Abstract

Unstructured off-road environments with complex terrain obstacles and pavement properties bring obvious challenges for special purpose autonomous vehicle control. A cascade direct yaw moment control strategy (CDYC), which contains a main loop and a servo loop, is proposed to enhance the accuracy and stability of an independent eight in-wheel motor-driven autonomous vehicle with rear-wheel steering (8WD/RWS). In the main loop, double PID controllers are designed to generate the desired drive moment and yaw rate. In the servo loop, the quadratic programming (QP) algorithm with the tire force boundaries optimally allocates the demanded yaw moment to individual wheel torques. The 8WD/RWS prototype is virtually established using TruckSim and serves as the control object for co-simulation. The proposed cascade controller is verified by simulations in customized off-road driving scenarios. The simulation results show that the proposed control architecture can effectively enhance the path-tracking ability and handling stability of the 8WD/RWS, as to ensure the maneuverability and control stability under extreme off-road conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference21 articles.

1. Overview for chassis vehicle dynamics control of distributed drive electric vehicle;Yin;J. Chongqing Univ. Technol.,2016

2. Development scheme and key technology of an electric vehicle: An overview

3. A control allocation strategy of multi-axle unmanned distributed drive vehicle;Luo;Proceedings of the 2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE),2021

4. Improving Performance of a 6 × 6 Off-Road Vehicle through Individual Wheel Control;Jackson,2002

5. Design of a VDC System for All-Wheel Independent Drive Vehicles

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3