A Digital Twinning Approach for the Internet of Unmanned Electric Vehicles (IoUEVs) in the Metaverse

Author:

Ebadpour Mohsen1ORCID,Jamshidi Mohammad (Behdad)2ORCID,Talla Jakub1,Hashemi-Dezaki Hamed1ORCID,Peroutka Zdeněk1

Affiliation:

1. Research and Innovation Center for Electrical Engineering (RICE), Faculty of Electrical Engineering, University of West Bohemia (UWB), 30100 Pilsen, Czech Republic

2. Faculty of Electrical Engineering, University of West Bohemia (UWB), 30100 Pilsen, Czech Republic

Abstract

Regarding the importance of the Internet of Things (IoT) and the Metaverse as two practical emerging technologies to enhance the digitalization of public transportation systems, this article introduces an approach for the improvement of IoT and unmanned electric vehicles in the Metaverse, called the Internet of Unmanned Electric Vehicles (IoUEVs). This research includes two important contributions. The first contribution is the description of a framework for how unmanned electric vehicles can be used in the Metaverse, and the second contribution is the creation of a digital twin for an unmanned electric vehicle. In the digital twin section, which is the focus of this research, we present a digital twin of an electronic differential system (EDS) in which the stability has been improved. Robust fuzzy logic algorithm-based speed controllers are employed in the EDS to independently control the EV wheels driven by high-performance brushless DC (BLDC) electric motors. In this study, the rotor position information of the motors, which is estimated from the low-precision Hall-effect sensors mounted on the motors’ shafts, is combined and converted to a set of common switching signals for empowering the EDS of the electric vehicle traction drive system. The proposed digital twin EDS relies on an accurate Hall sensor signals-based synchronizing/locking strategy with a dynamic steering pattern capable of running in severe road conditions with different surface profiles to ensure the EV’s stability. Unlike recent EDSs, the proposed digital twinning approach includes a simple practical topology with no need for auxiliary infrastructures, which is able to reduce mechanical losses and stresses and can be adapted to IoUEVs more effectively.

Funder

European Union Research, Development and Education Program Fund

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3