A Low BER DB-PAM4 Adaptive Equalizer for Large Channel Loss in Wireline Receivers

Author:

Wang Zheng,Lai Mingche,Lyu Fangxu,Hu Xiaoyue

Abstract

A high-speed serial interface is the core IP of a high-performance computer, data center and interconnection network; its bandwidth and bit error performance restrict the development of the system. With the evolution of high-speed serial interface line rates from 56 G to 112 G in high-end information systems, their bit errors increase sharply, limiting system performance. In order to solve the high-bit-error problem of the 112 Gb/s high-speed serial interface, this paper proposes a low-error Duo-binary PAM4 (DB-PAM) receive equalization technology. This technology utilizes the Duo-binary (DB) signal in which the channel and the transceiving equalizer work together to realize the low-error reception of the 112 Gb/s signal in the high-attenuation channel. To solve the problem of difficulty in generating high-speed DB-PAM4 signals and the complex adjustment of equalization parameters, this paper proposes a two-step progressive equalization technique. In the first step, the technology transmits not-return-to-zero (NRZ) signals at the transmitter (TX) and generates a Duo-binary (DB) signal path at the receiver using the least mean square error (LMS) algorithm. In the second step, the technology sends a precode-PAM4 (pre-PAM4) signal at TX; at the receiving end, the adaptive equalization algorithm is used to adjust the DSP equalization parameters to generate the optimal equalization parameters of the DB-PAM4 signal. This paper uses Cadence’s AMS simulation platform to verify the receive equalizer of DB-PAM4. Simulation results show: when a 112 Gb/s pre-PAM4 signal passes through the 35 dB@28 GHz channel, the receiver (RX) utilizes the adaptive equalizer to generate a 112 Gb/s DB-PAM4 signal, and the receiver bit error rate (BER) is less than 3e-9.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equalization technology and Quantization analysis for Data-converter Based PAM4 SerDes Link;2023 8th International Conference on Integrated Circuits and Microsystems (ICICM);2023-10-20

2. Research on the equalization algorithm of indoor visible light communication;5th International Conference on Information Science, Electrical, and Automation Engineering (ISEAE 2023);2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3