Abstract
This study deals with the problem of fiber-free optical communication systems—known as free space optics—using received signal strength identifier (RSSI) prediction analysis for hard switching of optical fiber-free link to base radio-frequency (RF) link and back. Adverse influences affecting the atmospheric transmission channel significantly impair optical communications, therefore attention was paid to the practical design, as well as to the implementation of the monitoring device that is used to record and process weather information along a transmission path. The article contains an analysis and methodology of the solution of the high availability of the optical link. Attention was paid to the technique of hard free space optics (FSO)/RF-switching with regard to the amount of received optical power detected and its relation to the quantities influencing the optical communication line. For this purpose, selected methods of machine learning were used, which serve to predict the received optical power. The process of analysis of prediction of received optical power is realized by regression models. The study presents the design of the optimal data input matrix model, which forms the basis for the training of the prediction models for estimating the received optical power.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献