Relay Selection Schemes for FSO Communications over Turbulent Channels

Author:

Taher Menna,Abaza Mohamed,Fedawy Mostafa,Aly Moustafa

Abstract

Free Space Optics (FSO) Communication has attracted the attention of the researchers in the last decade due to its high data rate, security, and low cost. Relay-assisted techniques are used to divide the distance to shorter hops in order to mitigate the effects of turbulence, weather attenuation, pointing error, and geometric loss. Choosing an active relay per time slot has been proven to enhance the performance of the system and decrease the loading effect on the system when compared to all active relays. This paper investigates the best relay that can be selected according to the source to relay (S-R) channel coefficient, relay to destination (R-D) channel coefficient, and source to destination (S-D) channel coefficient. A comprehensive comparison is applied to the three following cases: (a) Broadcast phase from source to relay to select the best (Proactive-Relay); (b) Broadcast phase from relay to destination after broadcasting to all relays then select (Reactive-relays); and, (c) Direct link from source-to-best relay-to-destination to conclude which method is better for different scenarios, such as turbulence regime, number of relays, different pointing error effect, and severity of S-R as compared to R-D and vice versa. The selection methods regard to four aspects: (1) Number of relays (two or three relays); (2) Distance between Source-Relay and Relay-Destination (D = 400–600 m, 500–500 m, and 600–400 m); (3) The different turbulence of Log-normal channel and Gamma-Gamma channel (with a refractive index coefficient( C n 2 = 0.5 × 10−14, 2 × 10−14 and 5 × 10−14)); and finally, (4) Beam waist ω z (pointing error).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3