Analysis of an Approximated Model for the Depletion Region Width of Planar Junctionless Transistors
-
Published:2019-12-01
Issue:12
Volume:8
Page:1436
-
ISSN:2079-9292
-
Container-title:Electronics
-
language:en
-
Short-container-title:Electronics
Author:
Nowbahari Arian,Roy Avisek,Nadeem Akram Muhammad,Marchetti Luca
Abstract
In this paper, we investigate the accuracy of the approximated analytical model currently utilized, by many researchers, to describe the depletion region width in planar junctionless transistors (PJLT). The proposed analysis was supported by numerical simulations performed in COMSOL Multiphysics software. By comparing the numerical results and the approximated analytical model of the depletion region width, we calculated that the model introduces a maximum RMS error equal to 90 % of the donor concentration in the substrate. The maximum error is achieved when the gate voltage approaches the threshold voltage ( V t h ) or when it approaches the flat band voltage ( V F B ) of the transistor. From these results, we concluded that this model cannot be used to determine accurately the flat-band and the threshold voltage of the transistor, although it represents a straightforward method to estimate the depletion region width in PJLT. By using the approximated analytical model, we extracted an analytical formula, which describes the electron concentration at the ideal boundary of the depletion region. This formula approximates the numerical data extracted from COMSOL with a relative error lower than 1 % . The proposed formula is in our opinion, as useful as the formula of the approximated analytical model because it allows for estimating the position of the depletion region also when the drain and source terminals are not grounded. We concluded that the analytical formula proposed at the end of this work could be useful to determine the position of the depletion region boundary in numerical simulations and in graphical representations provided by COMSOL Multiphysics software.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering