Author:
Yu Yi,Yuan Jia,Qiao Shushan,Hei Yong
Abstract
To get a better tradeoff between the transient performance and current efficiency of Digital Low-Dropout (DLDO) regulator, this paper proposes an all-digital Low-Dropout (LDO) regulator with adaptive clock technique. The sample clock is supplied by a proposed digital oscillator (DOSC) whose output frequency can be changed seamlessly. The frequency of sample clock and loop gain boost adaptively when the output voltage undershoot/overshoot is detected. Proposed DLDO integrates a ripple controller to eliminate steady-state supply ripple and reduce steady-state power. The proposed DLDO is simulated at Semiconductor Manufacturing International Corporation (SMIC) 55 nm with 5.03e-4 mm2 active area. The simulation results show that the operating voltage of proposed DLDO can be down to 0.5 V and the peak current efficiency is 99.99%. The measured voltage undershoot is 40 mV and transient response time is 500 ns with load step of 10 to 800 uA.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献