WiFreeze: Multiresolution Scalograms for Freezing of Gait Detection in Parkinson’s Leveraging 5G Spectrum with Deep Learning

Author:

Tahir AhsenORCID,Ahmad Jawad,Shah Syed Aziz,Morison Gordon,Skelton Dawn A.ORCID,Larijani HadiORCID,Abbasi Qammer H.ORCID,Imran Muhammad Ali,Gibson Ryan M.

Abstract

Freezing of Gait (FOG) is an episodic absence of forward movement in Parkinson’s Disease (PD) patients and represents an onset of disabilities. FOG hinders daily activities and increases fall risk. There is high demand for automating the process of FOG detection due to its impact on health and well being of individuals. This work presents WiFreeze, a noninvasive, line of sight, and lighting agnostic WiFi-based sensing system, which exploits ambient 5G spectrum for detection and classification of FOG. The core idea is to utilize the amplitude variations of wireless Channel State Information (CSI) to differentiate between FOG and activities of daily life. A total of 225 events with 45 FOG cases are captured from 15 patients with the help of 30 subcarriers and classification is performed with a deep neural network. Multiresolution scalograms are proposed for time–frequency signatures of human activities, due to their ability to capture and detect transients in CSI signals caused by transitions in human movements. A very deep Convolutional Neural Network (CNN), VGG-8K, with 8K neurons each, in fully connected layers is engineered and proposed for transfer learning with multiresolution scalogram features for detection of FOG. The proposed WiFreeze system outperforms all existing wearable and vision-based systems as well as deep CNN architectures with the highest accuracy of 99.7% for FOG detection. Furthermore, the proposed system provides the highest classification accuracies of 94.3% for voluntary stop and 97.6% for walking slow activities, with improvements of 9% and 23%, respectively, over the best performing state-of-the-art deep CNN architecture.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference53 articles.

1. The Incidence and Prevalence of Parkinson’s in the UK: Results from the Clinical Practice Research Datalink Summary Report https://www.parkinsons.org.uk/sites/default/files/2018-01/CS2960%20Incidence%20and%20prevalence%20report%20branding%20summary%20report.pdf

2. Modeling, Detecting, and Tracking Freezing of Gait in Parkinson Disease Using Inertial Sensors

3. Parkinson’s disease in China: a forty-year growing track of bedside work

4. Stages in the development of Parkinson’s disease-related pathology

5. The evolution of disability in Parkinson disease

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3