Abstract
Autonomous driving promises to be the main trend in the future intelligent transportation systems due to its potentiality for energy saving, and traffic and safety improvements. However, traditional autonomous vehicles’ behavioral decisions face consistency issues between behavioral decision and trajectory planning and shows a strong dependence on the human experience. In this paper, we present a planning-feature-based deep behavior decision method (PFBD) for autonomous driving in complex, dynamic traffic. We used a deep reinforcement learning (DRL) learning framework with the twin delayed deep deterministic policy gradient algorithm (TD3) to exploit the optimal policy. We took into account the features of topological routes in the decision making of autonomous vehicles, through which consistency between decision making and path planning layers can be guaranteed. Specifically, the features of a route extracted from path planning space are shared as the input states for the behavioral decision. The actor-network learns a near-optimal policy from the feasible and safe candidate emulated routes. Simulation tests on three typical scenarios have been performed to demonstrate the performance of the learning policy, including the comparison with a traditional rule-based expert algorithm and the comparison with the policy considering partial information of a contour. The results show that the proposed approach can achieve better decisions. Real-time test on an HQ3 (HongQi the third ) autonomous vehicle also validated the effectiveness of PFBD.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference27 articles.
1. Junior: The Stanford entry in the Urban Challenge
2. Hierarchical finite state machines for autonomous mobile systems
3. ALVINN: An Autonomous Land Vehicle in a Neural Network;Pomerleau,1989
4. End to End Learning for Self-Driving Cars;Bojarski;arXiv,2016
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献