Abstract
As semiconductor processes enter the nanoscale, system-on-chip (SoC) interconnects suffer from link aging owing to negative bias temperature instability (NBTI), hot carrier injection (HCI), and electromigration. In network-on-chip (NoC) for heterogeneous manycore systems, there is a difference in the aging speed of links depending on the location and utilization of resources. In this paper, we propose a heterogeneous manycore NoC topology synthesis that predicts the aging effect of each link and deploys routers and error correction code (ECC) logic. Aging-aware ECC logic is added to each link to achieve the same link lifetime with less area and latency than the Bose-Chaudhuri-Hocquenghem (BCH) logic. Moreover, based on the modified genetic algorithm, we search for a solution that minimizes the average latency while ensuring the link lifetime by changing the number of routers, location, and network connectivity. Simulation results demonstrate that the aging-aware topology synthesis reduces the average latency of the network by up to 26.68% compared with the aging analysis and the addition of ECC logic on the link after the topology synthesis. Furthermore, topology synthesis with aging-aware ECC logic reduces the maximum average latency by up to 39.49% compared with added BCH logic.
Funder
Ministry of Trade, Industry and Energy
Institute for Information and Communications Technology Promotion
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献