Enhancing Human Activity Recognition with Siamese Networks: A Comparative Study of Contrastive and Triplet Learning Approaches

Author:

Cha Byung-Rae1ORCID,Vaidya Binod2ORCID

Affiliation:

1. Information Technology Research Center, Chosun University, Gwangju 61452, Republic of Korea

2. School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Abstract

This paper delves into the realm of human activity recognition (HAR) by leveraging the capabilities of Siamese neural networks (SNNs), focusing on the comparative effectiveness of contrastive and triplet learning approaches. Against the backdrop of HAR’s growing importance in healthcare, sports, and smart environments, the need for advanced models capable of accurately recognizing and classifying complex human activities has become paramount. Addressing this, we have introduced a Siamese network architecture integrated with convolutional neural networks (CNNs) for spatial feature extraction, bidirectional LSTM (Bi-LSTM) for temporal dependency capture, and attention mechanisms to prioritize salient features. Employing both contrastive and triplet loss functions, we meticulously analyze the impact of these learning approaches on the network’s ability to generate discriminative embeddings for HAR tasks. Through extensive experimentation, the study reveals that Siamese networks, particularly those utilizing triplet loss functions, demonstrate superior performance in activity recognition accuracy and F1 scores compared with baseline deep learning models. The inclusion of a stacking meta-classifier further amplifies classification efficacy, showcasing the robustness and adaptability of our proposed model. Conclusively, our findings underscore the potential of Siamese networks with advanced learning paradigms in enhancing HAR systems, paving the way for future research in model optimization and application expansion.

Funder

Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3