An improved human activity recognition technique based on convolutional neural network

Author:

Raj RaviORCID,Kos AndrzejORCID

Abstract

AbstractA convolutional neural network (CNN) is an important and widely utilized part of the artificial neural network (ANN) for computer vision, mostly used in the pattern recognition system. The most important applications of CNN are medical image analysis, image classification, object recognition from videos, recommender systems, financial time series analysis, natural language processing, and human–computer interfaces. However, after the technological advancement in the power of computing ability and the emergence of huge quantities of labeled data provided through enhanced algorithms, nowadays, CNN is widely used in almost every area of study. One of the main uses of wearable technology and CNN within medical surveillance is human activity recognition (HAR), which must require constant tracking of everyday activities. This paper provides a comprehensive study of the application of CNNs in the classification of HAR tasks. We describe their enhancement, from their antecedents up to the current state-of-the-art systems of deep learning (DL). We have provided a comprehensive working principle of CNN for HAR tasks, and a CNN-based model is presented to perform the classification of human activities. The proposed technique interprets data from sensor sequences of inputs by using a multi-layered CNN that gathers temporal and spatial data related to human activities. The publicly available WISDM dataset for HAR has been used to perform this study. This proposed study uses the two-dimensional CNN approach to make a model for the classification of different human activities. A recent version of Python software has been used to perform the study. The rate of accuracy for HAR through the proposed model in this experiment is 97.20%, which is better than the previously estimated state-of-the-art technique. The findings of the study imply that using DL methods for activity recognition might greatly increase accuracy and increase the range of applications where HAR can be used successfully. We have also described the future research trends in the field of HAR in this article.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3