Reinventing Web Security: An Enhanced Cycle-Consistent Generative Adversarial Network Approach to Intrusion Detection

Author:

Fang Menghao1,Wang Yixiang2,Yang Liangbin1,Wu Haorui1,Yin Zilin2,Liu Xiang2,Xie Zexian1,Kong Zixiao1ORCID

Affiliation:

1. School of Cyber Science and Engineering, University of International Relations, Beijing 100091, China

2. Marine Engineering of College, Dalian Maritime University, Dalian 116026, China

Abstract

Web3.0, as the link between the physical and digital domains, faces increasing security threats due to its inherent complexity and openness. Traditional intrusion detection systems (IDSs) encounter formidable challenges in grappling with the multidimensional and nonlinear traffic data characteristic of the Web3.0 environment. Such challenges include insufficient samples of attack data, inadequate feature extraction, and resultant inaccuracies in model classification. Moreover, the scarcity of certain traffic data available for analysis by IDSs impedes the system’s capacity to document instances of malicious behavior. In response to these exigencies, this paper presents a novel approach to Web3.0 intrusion detection, predicated on the utilization of cycle-consistent generative adversarial networks (CycleGANs). Leveraging the data transformation capabilities of its generator, this method facilitates bidirectional conversion between normal Web3.0 behavioral data and potentially intrusive behavioral data. This transformative process not only augments the diversity and volume of recorded intrusive behaviors but also clandestinely simulates various attack scenarios. Furthermore, through fostering mutual competition and learning between the discriminator and generator, the approach enhances the ability to discern the defining characteristics of potential intrusive behaviors, thereby bolstering the accuracy of intrusion detection. To substantiate the efficacy of the CycleGAN-based intrusion detection method, simulation experiments were conducted utilizing public datasets, including KDD CUP 1999 (KDD), CIC-DDOS2019, CIC-IDS2018, and SR-BH 2020. The experimental findings evince the method’s remarkable accuracies across the four datasets, attaining rates of 99.81%, 97.79%, 89.25%, and 95.15%, respectively, while concurrently maintaining low false-positive rates. This research contributes novel insights and methodologies toward the advancement of Web3.0 intrusion detection through the application of CycleGAN technology, which is poised to play a pivotal role in fortifying the security landscape of Web3.0.

Funder

Fundamental Research Funds for the Central Universities, the University of International Relations

Teaching Reform and Innovation Project, University of International Relations

Publisher

MDPI AG

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3