Using Feature Selection Enhancement to Evaluate Attack Detection in the Internet of Things Environment

Author:

Harahsheh Khawlah1ORCID,Al-Naimat Rami1,Chen Chung-Hao1

Affiliation:

1. Department of Electrical & Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA

Abstract

The rapid evolution of technology has given rise to a connected world where billions of devices interact seamlessly, forming what is known as the Internet of Things (IoT). While the IoT offers incredible convenience and efficiency, it presents a significant challenge to cybersecurity and is characterized by various power, capacity, and computational process limitations. Machine learning techniques, particularly those encompassing supervised classification techniques, offer a systematic approach to training models using labeled datasets. These techniques enable intrusion detection systems (IDSs) to discern patterns indicative of potential attacks amidst the vast amounts of IoT data. Our investigation delves into various aspects of supervised classification, including feature selection, model training, and evaluation methodologies, to comprehensively evaluate their impact on attack detection effectiveness. The key features selected to improve IDS efficiency and reduce dataset size, thereby decreasing the time required for attack detection, are drawn from the extensive network dataset. This paper introduces an enhanced feature selection method designed to reduce the computational overhead on IoT resources while simultaneously strengthening intrusion detection capabilities within the IoT environment. The experimental results based on the InSDN dataset demonstrate that our proposed methodology achieves the highest accuracy with the fewest number of features and has a low computational cost. Specifically, we attain a 99.99% accuracy with 11 features and a computational time of 0.8599 s.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3