A Novel Hybrid Unsupervised Learning Approach for Enhanced Cybersecurity in the IoT

Author:

Kaliyaperumal Prabu1ORCID,Periyasamy Sudhakar1,Thirumalaisamy Manikandan2ORCID,Balusamy Balamurugan3,Benedetto Francesco4ORCID

Affiliation:

1. School of Computer Science and Engineering, Galgotias University, Dankaur 203201, India

2. Department of CSBS, Rajalakshmi Engineering College, Tamil Nadu 602105, India

3. Associate Dean-Students, Shiv Nadar University, Delhi-NCR Campus, Noida 201305, India

4. Signal Processing for TLC and Economics, University of Roma Tre, 00154 Rome, Italy

Abstract

The proliferation of IoT services has spurred a surge in network attacks, heightening cybersecurity concerns. Essential to network defense, intrusion detection and prevention systems (IDPSs) identify malicious activities, including denial of service (DoS), distributed denial of service (DDoS), botnet, brute force, infiltration, and Heartbleed. This study focuses on leveraging unsupervised learning for training detection models to counter these threats effectively. The proposed method utilizes basic autoencoders (bAEs) for dimensionality reduction and encompasses a three-stage detection model: one-class support vector machine (OCSVM) and deep autoencoder (dAE) attack detection, complemented by density-based spatial clustering of applications with noise (DBSCAN) for attack clustering. Accurately delineated clusters aid in mapping attack tactics. The MITRE ATT&CK framework establishes a “Cyber Threat Repository”, cataloging attacks and tactics, enabling immediate response based on priority. Leveraging preprocessed and unlabeled normal network traffic data, this approach enables the identification of novel attacks while mitigating the impact of imbalanced training data on model performance. The autoencoder method utilizes reconstruction error, OCSVM employs a kernel function to establish a hyperplane for anomaly detection, while DBSCAN employs a density-based approach to identify clusters, manage noise, accommodate diverse shapes, automatically determining cluster count, ensuring scalability, and minimizing false positives and false negatives. Evaluated on standard datasets such as CIC-IDS2017 and CSECIC-IDS2018, the proposed model outperforms existing state of art methods. Our approach achieves accuracies exceeding 98% for the two datasets, thus confirming its efficacy and effectiveness for application in efficient intrusion detection systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3