High-Performance Low-Pass Filter Using Stepped Impedance Resonator and Defected Ground Structure

Author:

Zhang JinORCID,Yang Ruosong,Zhang Chen

Abstract

A microstrip low-pass filter (LPF) using reformative stepped impedance resonator (SIR) and defected ground structure (DGS) is proposed in this paper. The proposed filter not only possesses the advantage of high frequency selectivity of SIR hairpin LPF with internal coupling, but also possesses the large stop-band (SB) bandwidth by adjusting the number and area of DGS units. The LPF proposed in this paper possesses the properties of miniaturization, wide SB, high selectivity, and low pass-band ripple (PBR) simultaneously. The characteristic parameters of the proposed LPF is that: the pass-band (PB) is 0~2 GHz, the PBR is 0.5 dB, the SB range is from 2.4 GHz to 9 GHz when the attenuation is under 20 dB, and the maximal attenuation could reach 45 dB in the SB. The size of this proposed LPF is 0.13 λ × 0.09 λ ; λ is the corresponding wavelength of the upper PB edge frequency of 2 GHz.

Funder

the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel FVF-based GHz-range biquad in a 28 nm CMOS FD-SOI technology;AEU - International Journal of Electronics and Communications;2024-10

2. Polyester‐based wearable bandpass microstrip filter;Microwave and Optical Technology Letters;2023-07-12

3. A 17 GHz inductorless low‐pass filter based on a quasi‐Sallen–Key approach;International Journal of Circuit Theory and Applications;2023-06-20

4. A Tunable Microstrip Low-Pass Filter Using Defected Ground Structures;2023 IEEE MTT-S International Wireless Symposium (IWS);2023-05-14

5. Design and analysis of novel DGS-loaded low-pass filter with wide stopband;Frequenz;2023-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3