Narrowband Interference Separation for Synthetic Aperture Radar via Sensing Matrix Optimization-Based Block Sparse Bayesian Learning

Author:

Li Guojing,Ye Wei,Lao Guochao,Kong Shuya,Yan Di

Abstract

High-resolution synthetic aperture radar (SAR) operating with a large bandwidth is subject to impacts from various kinds of narrowband interference (NBI) in complex electromagnetic environments. Recently, many radio frequency interference (RFI) suppression approaches for SAR based on sparse recovery have been proposed and demonstrated to outperform traditional ones in preserving the signal of interest (SOI) while suppressing the interference by exploiting their intrinsic structures. In particular, the joint recovery strategy of SOI and NBI with a cascaded dictionary, which eliminates the steps of NBI reconstruction and time-domain cancellation, can further reduce unnecessary system complexity. However, these sparsity-based approaches hardly work effectively for signals from an extended target or NBI with a certain bandwidth, since neither of them is sparse in a prescient domain. Moreover, sub-dictionaries corresponding to different components in the cascaded matrix are not strictly independent, which severely limits the performance of separated reconstruction. In this paper, we present an enhanced NBI separation algorithm for SAR via sensing matrix optimization-based block sparse Bayesian learning (SMO-BSBL) to solve these problems above. First, we extend the block sparse Bayesian learning framework to a complex-valued domain for the convenience of radar signal processing with lower computation complexity and modify it to deal with the separation problem of NBI in the contaminated echo. For the sake of improving the separated reconstruction performance, we propose a new block coherence measure by defining the external and internal block structure, which is used for optimizing the observation matrix. The optimized observation matrix is then employed to reconstruct SOI and NBI simultaneously under the modified BSBL framework, given a known and fixed cascaded dictionary. Numerical simulation experiments and comparison results demonstrate that the proposed SMO-BSBL is effective and superior to other advanced algorithms in NBI suppression for SAR.

Funder

Research Project of State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3