Applying a Sliding Mode Controller to Maximum Power Point Tracking in a Quasi Z-Source Inverter Based on the Power Curve of a Photovoltaic Cell

Author:

Ahangarkolaei Jaber MerrikhiORCID,Izadi Mahdi,Nouri Tohid

Abstract

Due to the nonlinear nature of photovoltaic (PV) cells and the dependence of the maximum achievable power on environmental conditions, a robust nonlinear controller is essential to warrant maximum power point tracking (MPPT) by managing the nonlinearities of the system and making it robust against varying environmental conditions. Most methods used to obtain MPPT have some disadvantages; one of them is the oscillation around the operating point. In this paper, to minimize these problems, a robust nonlinear sliding mode controller based on the power curve of a PV (SMC-PCPV) was proposed to determine the maximum power point (MPP) of a PV panel, for a quasi Z-source inverter (qZSI) as a single-stage inverter. Single-stage inverters have lower components and prices, smaller sizes, more simplicity, and higher efficiency than two-stage inverters. One of the important features of this controller is its ease of implementation compared to other methods presented in the articles. To show the effectiveness and robustness of the proposed scheme, the SMC-PCPV was carried out on computer simulations and laboratory prototypes. The simulation and experimental results showed that the proposed controller was properly resistant to changes in input parameters, such as temperature and radiation, and controlled the converter at the best point to obtain the most power from the PV panel, and it had good speed in response to the changing environmental condition.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3