Self-Supervised Learning for Time-Series Anomaly Detection in Industrial Internet of Things

Author:

Tran Duc Hoang,Nguyen Van Linh,Nguyen HuyORCID,Jang Yeong MinORCID

Abstract

Industrial sensors have presently emerged as a very important device for monitoring environmental conditions in the manufacturing system. However, abnormal behavior of these smart sensors may cause some failure or potential risk during system operation, thereby increasing the high availability of the entire manufacturing process. An anomaly detection tool in industrial monitoring system must detect any abnormal behavior in advance. Recently, self-supervised learning demonstrated comparable performance with other methods while eliminating manually labeled processes in training. Moreover, this technique decreases the complexity of the training model in lightweight devices to increase the processing time and detect accurately the health of equipment assets. Therefore, this paper proposes an anomaly detection method using a self-supervised learning framework in a time-series dataset to improve the model performance in terms of high accuracy and lightweight method. With the consideration of time-series data augmentation for generating pseudo-label, a classifier using one-dimension convolutional neural network (1DCNN) is applied to learn the characteristics of normal data. This classification model output will effectively measure the degree of abnormality. The experimental results indicate that our proposed method outperforms classic anomaly detection methods. Furthermore, the model deployment in a real testbed is performed to illustrate the efficiency of the self-supervised learning method for time-series anomaly detection.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3