Sub-Synchronous Oscillation Suppression Strategy Based on Impedance Modeling by Attaching Virtual Resistance Controllers for Doubly-Fed Induction Generator

Author:

Liu Yingming,Guo Guoxian,Wang Xiaodong,Wang Hanbo,Wang Liming

Abstract

A sub-synchronous oscillation (SSO) suppression strategy of attaching virtual resistance controllers to the rotor-side converter (RSC) of the doubly-fed induction generator (DFIG) is proposed in this study to suppress sub-synchronous oscillation (SSO) caused by series compensation and grid connection of DFIG. A DFIG-based frequency domain impedance model considering RSC control under small signal perturbations is developed in a three-phase stationary coordinate system. Subsequently, the factors and mechanisms of SSO in the system with different phase sequences are analyzed in combination with the equivalent RLC resonant circuit of a DFIG-based series-compensated grid-connected system (SCGCS). SSO occurs when RSC and rotor winding generate a large equivalent negative resistance at the SSO frequency, resulting in a negative total system resistance. Additionally, the influences of series compensation degree (SCD) of line and inner loop parameters (ILPs) of RSC related to the total impedance of the system on the SSO characteristics are analyzed to optimize the parameters and improve the system stability. Based on the causes of SSO, virtual resistance controllers are attached to RSC to provide positive resistance to the system and to offset the equivalent negative resistance of RSC and rotor winding at the SSO frequency, thereby avoiding SSO of the system. Finally, time-domain simulations using power system computer aided design/electromagnetic transients including dc (PSCAD/EMTDC) show that the SSO of the system is effectively suppressed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3