Mechanism Analysis of Multiple Disturbance Factors and Study of Suppression Strategies of DFIG Grid-Side Converters Caused by Sub-Synchronous Oscillation

Author:

Sun Dong-Yang1,Qian Zi-Jie1,Shen Wen-Qiang1,Zhou Kai1ORCID,Jin Ning-Zhi1ORCID,Chen Qing-Guo1

Affiliation:

1. School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China

Abstract

With the increasing utilization of electronic equipment in the power system, sub-synchronous oscillation (SSO) has occurred many times and caused off-grid accidents because of power oscillation. SSO has become one of the main problems that restrict the development of new energy. In this paper, power oscillation in grid-side converters (GSCs) in doubly-fed induction generators (DFIGs) under SSO is studied. Firstly, the influence mechanism of SSO on GSC multipath disturbance is studied. Secondly, the problem of coupling oscillation caused by PLL output errors after coordinate transformation is studied, and the mathematical model of GSC output power considering SSO multipath disturbance is established. By analyzing the oscillation suppression ability of the quasi-resonant controller under variable SSO states, the key influencing factors of SSO for GSC power oscillation suppression strategies are determined. Furthermore, based on the above theoretical analysis and research, an improved PLL is designed to eliminate the influence of its output errors on the disturbance of GSC. At the same time, a DFIG-GSC power oscillation suppression strategy using an adaptive quasi-resonant controller is designed to eliminate the influence of SSO on the multi-path disturbance of GSC. Finally, the effectiveness of the proposed suppression strategy is verified using simulation and experimental results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3