Abstract
Invasive deep brain stimulation has proven to be clinically therapeutic for patients with drug-refractory epilepsy. The aim of this study was to develop a novel transcranial electrical device as a noninvasive stimulation modality for seizure treatment. We fabricated a novel transcranial electrical device and tested it in four swine brains with depth electrodes surgically implanted under neuro-navigation. Stimulation with two high-frequency alternating currents was used to cause an interference envelope. Acute focal epilepsy was induced by a subcortical injection of penicillin and specific anesthesia protocol. The frequency and electric field of the stimulation in the hippocampus were investigated. The two frequencies (2 k and 2.14 kHz) of stimulation successfully caused an envelope of 140 Hz. With 1 mA stimulation, the electric field degraded gradually and induced an in situ electric field of 0.68 mV/mm in the hippocampi. The interference mode transcranial electric stimulation attenuated the originally induced epileptic form discharges. No neuronal or axonal injuries were noted histopathologically after the stimulation. The feasibility and biosafety of our proposed device were preliminarily verified. Future translational research should focus on the electrode deposition and stimulation parameters for a quantitative therapeutic effect.
Funder
Taiwan Ministry of Science and Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献