Author:
Wu Chun-Wei,Lin Bor-Shing,Zhang Zhao,Hsieh Tsung-Hsun,Liou Jian-Chiun,Lo Wei-Lun,Li Yu-Ting,Chiu Shao-Chu,Peng Chih-Wei
Abstract
AbstractTranscranial temporal interference stimulation (tTIS) is a promising brain stimulation method that can target deep brain regions by delivering an interfering current from surface electrodes. Most instances of tTIS stimulate the brain with a single-frequency sinusoidal waveform generated by wave interference. Theta burst stimulation is an effective stimulation scheme that can modulate neuroplasticity by generating long-term potentiation- or depression-like effects. To broaden tTIS application, we developed a theta burst protocol using tTIS technique to modulate neuroplasticity in rats. Two cannula electrodes were unilaterally implanted into the intact skull over the primary motor cortex. Electrical field of temporal interference envelopes generated by tTIS through cannula electrodes were recorded from primary motor cortex. Theta burst schemes were characterized, and motor activation induced by the stimulation was also evaluated simultaneously by observing electromyographic signals from the corresponding brachioradialis muscle. After validating the stimulation scheme, we further tested the modulatory effects of theta burst stimulation delivered by tTIS and by conventional transcranial electrical stimulation on primary motor cortex excitability. Changes in the amplitude of motor evoked potentials, elicited when the primary motor cortex was activated by electrical pulses, were measured before and after theta burst stimulation by both techniques. Significant potentiation and suppression were found at 15 to 30 min after the intermittent and continuous theta burst stimulation delivered using tTIS, respectively. However, comparing to theta burst stimulations delivered using conventional form of transcranial electrical stimulation, using tTIS expressed no significant difference in modulating motor evoked potential amplitudes. Sham treatment from both methods had no effect on changing the motor evoked potential amplitude. The present study demonstrated the feasibility of using tTIS to achieve a theta burst stimulation scheme for motor cortical neuromodulation. These findings also indicated the future potential of using tTIS to carry out theta burst stimulation protocols in deep-brain networks for modulating neuroplasticity.
Funder
National Science and Technology Council
Ministry of Education
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–87.
2. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.
3. Cárdenas-Morales L, Nowak DA, Kammer T, Wolf RC, Schönfeldt-Lecuona C. Mechanisms and applications of Theta-burst rTMS on the Human Motor Cortex. Brain Topogr. 2010;22(4):294–306.
4. Suppa A, Huang Y-Z, Funke K, Ridding MC, Cheeran B, Di Lazzaro V et al. Ten years of Theta Burst Stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 2016.
5. Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W. Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:97–103.