Abstract
Inevitably, the rapid growth of the electronics industry and the wide availability of tailored programming tools and support are accelerating the digital transformation of the agricultural sector. The latter transformation seems to foster the hopes for tackling the depletion and degradation of natural resources and increasing productivity in order to cover the needs of Earth’s continuously growing population. Consequently, people getting involved with modern agriculture, from farmers to students, should become familiar with and be able to use and improve the innovative systems making the scene. At this point, the contribution of the STEM educational practices in demystifying new areas, especially in primary and secondary education, is remarkable and thus welcome, but things become quite uncertain when trying to discover efficient practices for higher education, and students of agricultural engineering are not an exception. Indeed, university students are not all newcomers to STEM and ask for real-world experiences that better prepare them for their professional careers. Trying to bridge the gap, this work highlights good practices during the various implementation stages of electric robotic ground vehicles that can serve realistic agricultural tasks. Several innovative parts, such as credit card-sized systems, AI-capable modules, smartphones, GPS, solar panels, and network transceivers are properly combined with electromechanical components and recycled materials to deliver technically and educationally meaningful results.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献