A 28 nm Bulk CMOS Fully Digital BPSK Demodulator for US-Powered IMDs Downlink Communications

Author:

Ballo AndreaORCID,Grasso Alfio DarioORCID,Privitera MarcoORCID

Abstract

Low-invasive and battery-less implantable medical devices (IMDs) have been increasingly emerging in recent years. The developed solutions in the literature often concentrate on the Bidirectional Data-Link for long-term monitoring devices. Indeed, their ability to collect data and communicate them to the external world, namely Data Up-Link, has revealed a promising solution for bioelectronic medicine. Furthermore, the capacity to control organs such as the brain, nerves, heart-beat and gastrointestinal activities, made up through the manipulation of electrical transducers, could optimise therapeutic protocols and help patients’ pain relief. These kinds of stimulations come from the modulation of a powering signal generated from an externally placed unit coupled to the implanted receivers for power/data exchanging. The established communication is also defined as a Data Down-Link. In this framework, a new solution of the Binary Phase-Shift Keying (BPSK) demodulator is presented in this paper in order to design a robust, low-area, and low-power Down-Link for ultrasound (US)-powered IMDs. The implemented system is fully digital and PLL-free, thus reducing area occupation and making it fully synthesizable. Post-layout simulation results are reported using a 28 nm Bulk CMOS technology provided by TSMC. Using a 2 MHz carrier input signal and an implant depth of 1 cm, the data rate is up to 1.33 Mbit/s with a 50% duty cycle, while the minimum average power consumption is cut-down to 3.3 μW in the typical corner.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3