Encrypted Malicious Traffic Detection Based on Word2Vec

Author:

Ferriyan AndreyORCID,Thamrin Achmad Husni,Takeda Keiji,Murai Jun

Abstract

Network-based intrusion detections become more difficult as Internet traffic is mostly encrypted. This paper introduces a method to detect encrypted malicious traffic based on the Transport Layer Security handshake and payload features without waiting for the traffic session to finish while preserving privacy. Our method, called TLS2Vec, creates words from the extracted features and uses Long Short-Term Memory (LSTM) for inference. We evaluated our method using traffic from three malicious applications and a benign application that we obtained from two publicly available datasets. Our results showed that TLS2Vec is promising as a tool to detect such malicious traffic.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference56 articles.

1. Lets Encrypt Status Report https://letsencrypt.org/stats

2. Firefox Telemetry https://docs.telemetry.mozilla.org/datasets/other/ssl/reference.html

3. Google Transparency Report https://transparencyreport.google.com/https/overview?hl=en

4. The Relevance of Network Security in an Encrypted World https://blogs.vmware.com/networkvirtualization/2020/09/network-security-encrypted.html

5. Analyzing Peer-To-Peer Traffic Across Large Networks

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3