A Fast VVC Intra Prediction Based on Gradient Analysis and Multi-Feature Fusion CNN

Author:

Jing Zhiyong1,Zhu Wendi1,Zhang Qiuwen1

Affiliation:

1. College of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract

The Joint Video Exploration Team (JVET) has created the Versatile Video Coding Standard (VVC/H.266), the most up-to-date video coding standard, offering a broad selection of coding tools. The maturity of commercial VVC codecs can significantly reduce costs and improve coding efficiency. However, the latest video coding standards have introduced binomial and trinomial tree partitioning methods, which cause the coding units (CUs) to have various shapes, increasing the complexity of coding. This article proposes a technique to simplify VVC intra prediction through the use of gradient analysis and a multi-feature fusion CNN. The gradient of CUs is computed by employing the Sobel operator, the calculation results are used for predecision-making. Further decisions can be made by CNN for coding units that cannot be judged whether they should be segmented or not. We calculate the standard deviation (SD) and the initial depth as the input features of the CNN. To implement this method, the initial depth can be determined by constructing a segmented depth prediction dictionary. For the initial segmentation depth of the coding unit, regardless of its shape, it can also be determined by consulting the dictionary. The algorithm can determine whether to split CUs of varying sizes, decreasing the complexity of the CU division process and making VVC more practical. Experimental results demonstrate that the proposed algorithm can reduce encoding time by 36.56% with a minimal increase of 1.06% Bjøntegaard delta bit rate (BD-BR) compared to the original algorithm.

Funder

National Natural Science Foundation of China

Basic Research Projects of Education Department of Henan

Key Research and Development Program of Henan

Postgraduate Education Reform and Quality Improvement Project of Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3