Integration of Distributed Energy Resources and EV Fast-Charging Infrastructure in High-Speed Railway Systems

Author:

Ahmadi MiadORCID,Jafari Kaleybar HamedORCID,Brenna MorrisORCID,Castelli-Dezza Francesco,Carmeli Maria StefaniaORCID

Abstract

Low carbon emission transportation is attracting global attention where electric railway power systems (ERPS) and electric vehicles (EVs) act as a load. Besides the main utility grid, renewable energy sources (RES) including photovoltaic (PV) panels and wind turbines are implemented to supply the loads fully or partially. In this paper, a novel smart DC catenary system is proposed in which renewable sources, storage systems, and DC fast-charging stations are connected to the overhead DC catenary line of the high-speed railway power system. The generated power from renewable sources and consumed power by charging stations are processed by their dedicated DC-DC power electronics converters. Furthermore, a storage system is used as a backup system not only for the case of blackouts but also because of the intermittent nature of renewable energy sources to supply the loads continuously. The paper presents an optimal power control for various parts and a power management system (PMS) that manages the power flow from wind-PV-storage system to EV-ERPS system. The proposed system has been investigated using a real Italian Rome-Florence 3 kV high-speed line as a case study with real data of ERPS load. The EV fast-charging station power demand, wind speed, solar irradiance, and temperature were recorded for 24 h in order to provide us with realistic output data. The simulation results obtained by MATLAB/Simulink are presented to validate the effectiveness of the proposed system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3