Hybrid Energy Storage System Taking Advantage of Electric Vehicle Batteries for Recovering Regenerative Braking Energy in Railway Station

Author:

Jafari Kaleybar Hamed1ORCID,Golnargesi Mostafa1,Brenna Morris1ORCID,Zaninelli Dario1

Affiliation:

1. Energy Department, Politecnico di Milano, 20156 Milan, Italy

Abstract

Nowadays, nations are moving toward the electrification of the transportation section, and the widespread development of EV charging stations and their infrastructures supplied by the grid would strain the power grid and lead to overload issues in the network. To address this challenge, this paper presents a method for utilizing the braking energy of trains in railway stations to charge EVs located in strategic areas like park-and-ride regions close to railway stations improving energy efficiency and preventing grid overload. To validate the feasibility of the proposed system, a metro substation in Milan city is considered as a case study located in outskirts of the city and contains large number of parking space for vehicles. Three different scenarios are evaluated including DC fast charging station, AC low charging station and collaborative hybrid energy storage based AC charging station as EV charging station type. The results are studied for different EV population number, charging rate and the contractual power grid. Meanwhile, the possibility of proposed system in participating as V2G technology and taking advantage of the EV’s batteries to provide ancillary support to accelerating trains is investigated regarding peak shaving objective. The results indicated that the suggested interconnected system operates effectively when a significant quantity of EVs are parked at the station. However, the results revealed that the performance of the proposed system is notably influenced by other factors and a limited number of EVs during the early morning and late evening periods. Overall, this study confirms the feasibility of energy transfer between two types of transportation means in intermodal areas.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3