An Effective Hotel Recommendation System through Processing Heterogeneous Data

Author:

Forhad Md. Shafiul AlamORCID,Arefin Mohammad ShamsulORCID,Kayes A. S. M.ORCID,Ahmed KhandakarORCID,Chowdhury Mohammad Jabed Morshed,Kumara IndikaORCID

Abstract

Recommendation systems have recently gained a lot of popularity in various industries such as entertainment and tourism. They can act as filters of information by providing relevant suggestions to the users through processing heterogeneous data from different networks. Many travelers and tourists routinely rely on textual reviews, numerical ratings, and points of interest to select hotels in cities worldwide. To attract more customers, online hotel booking systems typically rank their hotels based on the recommendations from their customers. In this paper, we present a framework that can rank hotels by analyzing hotels’ customer reviews and nearby amenities. In addition, a framework is presented that combines the scores generated from user reviews and surrounding facilities. We perform experiments using datasets from online hotel booking platforms such as TripAdvisor and Booking to evaluate the effectiveness and applicability of the proposed framework. We first store the keywords extracted from reviews and assign weights to each considered unigram and bigram keywords and, then, we give a numerical score to each considered keyword. Finally, our proposed system aggregates the scores generated from the reviews and surrounding environments from different categories of the facilities. Experimental results confirm the effectiveness of the proposed recommendation framework.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of a Hotel Recommendation System Using Deep Learning;Advances in Marketing, Customer Relationship Management, and E-Services;2024-06-28

2. Deep click interest network for reranking hotels;Engineering Applications of Artificial Intelligence;2024-04

3. Machine learning approaches for hotel recommendation;AIP Conference Proceedings;2024

4. Tourism Hotel Accommodation Recommendation Algorithm Based on the Cellular Space-Improved Divisive Analysis (CS-IDIANA) Clustering Model;Electronics;2023-12-21

5. Extra-Tree Classification of Customer Review for Hotel Recommendation;2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3