Abstract
Ontology plays a critical role in knowledge engineering and knowledge graphs (KGs). However, building ontology is still a nontrivial task. Ontology learning aims at generating domain ontologies from various kinds of resources by natural language processing and machine learning techniques. One major challenge of ontology learning is reducing labeling work for new domains. This paper proposes an ontology learning method based on transfer learning, namely TF-Mnt, which aims at learning knowledge from new domains that have limited labeled data. This paper selects Web data as the learning source and defines various features, which utilizes abundant textual information and heterogeneous semi-structured information. Then, a new transfer learning model TF-Mnt is proposed, and the parameters’ estimation is also addressed. Although there exist distribution differences of features between two domains, TF-Mnt can measure the relevance by calculating the correlation coefficient. Moreover, TF-Mnt can efficiently transfer knowledge from the source domain to the target domain and avoid negative transfer. Experiments in real-world datasets show that TF-Mnt achieves promising learning performance for new domains despite the small number of labels in it, by learning knowledge from a proper existing domain which can be automatically selected.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献