Abstract
In this paper, a generalized nontriangular normal form is presented to facilitate designing a recursive integral backstepping control for the class of underactuated nonholonomic systems, i.e., wheeled mobile robots (WMRs) that perform posture stabilization and trajectory tracking in environments without obstacles. Based on the differential geometry theory, we develop a multiple input multiple output (MINO) generalization of normal form using the input-output feedback linearization technique. Then, the change of variables (diffeomorphism) transform the state-space model of WMR, incorporating both kinematic and dynamic models into nontriangular normal form. As a result, the system dynamics can be represented as internal and external dynamics. The nonlinear internal dynamics of WMR pose serious challenges to design a suitable controller due to its internal dynamics being not minimum phase and non-strict feedback form structure. The proposed backstepping controller is designed in two steps. First, a standard integral backstepping controller is designed to stabilize the robot’s orientation angle. Then, a recursive integral backstepping control technique is applied to achieve asymptotic convergence of position error to zero. Hence, both asymptotic posture stabilization and trajectory tracking are achieved in semi-global regions, except the nonzero initial condition of the orientation angle. The asymptotic stability of the entire closed-loop system is shown using the Lyapunov criteria.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献