Abstract
Panoramic images have a wide range of applications in many fields with their ability to perceive all-round information. Object detection based on panoramic images has certain advantages in terms of environment perception due to the characteristics of panoramic images, e.g., lager perspective. In recent years, deep learning methods have achieved remarkable results in image classification and object detection. Their performance depends on the large amount of training data. Therefore, a good training dataset is a prerequisite for the methods to achieve better recognition results. Then, we construct a benchmark named Pano-RSOD for panoramic road scene object detection. Pano-RSOD contains vehicles, pedestrians, traffic signs and guiding arrows. The objects of Pano-RSOD are labelled by bounding boxes in the images. Different from traditional object detection datasets, Pano-RSOD contains more objects in a panoramic image, and the high-resolution images have 360-degree environmental perception, more annotations, more small objects and diverse road scenes. The state-of-the-art deep learning algorithms are trained on Pano-RSOD for object detection, which demonstrates that Pano-RSOD is a useful benchmark, and it provides a better panoramic image training dataset for object detection tasks, especially for small and deformed objects.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献