Pano-RSOD: A Dataset and Benchmark for Panoramic Road Scene Object Detection

Author:

Li Yong,Tong Guofeng,Gao Huashuai,Wang Yuebin,Zhang LiqiangORCID,Chen Huairong

Abstract

Panoramic images have a wide range of applications in many fields with their ability to perceive all-round information. Object detection based on panoramic images has certain advantages in terms of environment perception due to the characteristics of panoramic images, e.g., lager perspective. In recent years, deep learning methods have achieved remarkable results in image classification and object detection. Their performance depends on the large amount of training data. Therefore, a good training dataset is a prerequisite for the methods to achieve better recognition results. Then, we construct a benchmark named Pano-RSOD for panoramic road scene object detection. Pano-RSOD contains vehicles, pedestrians, traffic signs and guiding arrows. The objects of Pano-RSOD are labelled by bounding boxes in the images. Different from traditional object detection datasets, Pano-RSOD contains more objects in a panoramic image, and the high-resolution images have 360-degree environmental perception, more annotations, more small objects and diverse road scenes. The state-of-the-art deep learning algorithms are trained on Pano-RSOD for object detection, which demonstrates that Pano-RSOD is a useful benchmark, and it provides a better panoramic image training dataset for object detection tasks, especially for small and deformed objects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference44 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3