ATCNet: A Novel Approach for Predicting Highway Visibility Using Attention-Enhanced Transformer–Capsule Networks

Author:

Li Wen123,Yang Xuekun2,Yuan Guowu13ORCID,Xu Dan1ORCID

Affiliation:

1. School of Information Science and Engineering, Yunnan University, Kunming 650504, China

2. National Engineering Laboratory for Surface Transportation Weather Impacts Prevention, Broadvision Engineering Consultants Co., Ltd., Kunming 650299, China

3. Yunnan Key Laboratory of Digital Communications, Kunming 650103, China

Abstract

Meteorological disasters on highways can significantly reduce road traffic efficiency. Low visibility caused by dense fog is a severe meteorological disaster that greatly increases the incidence of traffic accidents on highways. Accurately predicting highway visibility and taking timely countermeasures can mitigate the impact of meteorological disasters and enhance traffic safety. This paper introduces the ATCNet model for highway visibility prediction. In ATCNet, we integrate Transformer, Capsule Networks (CapsNet), and self-attention mechanisms to leverage their respective complementary strengths. The Transformer component effectively captures the temporal characteristics of the data, while the Capsule Network efficiently decodes the spatial correlations and hierarchical structures among multidimensional meteorological elements. The self-attention mechanism, serving as the final decision-refining step, ensures that all key temporal and spatial hierarchical information is fully considered, significantly enhancing the accuracy and reliability of the predictions. This integrated approach is crucial in understanding highway visibility prediction tasks influenced by temporal variations and spatial complexities. Additionally, this study provides a self-collected publicly available dataset, WD13VIS, for meteorological research related to highway traffic in high-altitude mountain areas. This study evaluates the model’s performance in terms of Mean Squared Error (MSE) and Mean Absolute Error (MAE). Experimental results show that our ATCNet reduces the MSE and MAE by 1.21% and 3.7% on the WD13VIS dataset compared to the latest time series prediction model architecture. On the comparative dataset WDVigoVis, our ATCNet reduces the MSE and MAE by 2.05% and 5.4%, respectively. Our model’s predictions are accurate and effective, and our model shows significant progress compared to competing models, demonstrating strong universality. This model has been integrated into practical systems and has achieved positive results.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3