1. McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B.A. (2017, January 20–22). Communication-efficient learning of deep networks from decentralized data. Proceedings of the Artificial Intelligence and Statistics Conference, Fort Lauderdale, FL, USA.
2. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2020, January 2–4). Federated optimization in heterogeneous networks. Proceedings of the Machine Learning and Systems, Austin, TX, USA.
3. Gao, L., Fu, H., Li, L., Chen, Y., Xu, M., and Xu, C. (2022, January 18–24). FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling and Correction. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA.
4. Collins, L., Hassani, H., Mokhtari, A., and Shakkottai, S. (2021). Exploiting Shared Representations for Personalized Federated Learning. arXiv.
5. Deng, Y., Kamani, M., and Mahdavi, M. (2020). Adaptive Personalized Federated Learning. arXiv.