Personalized Federated Learning Incorporating Adaptive Model Pruning at the Edge

Author:

Zhou Yueying12ORCID,Duan Gaoxiang12,Qiu Tianchen12,Zhang Lin3,Tian Li12,Zheng Xiaoying12,Zhu Yongxin12ORCID

Affiliation:

1. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Shanghai Nuclear Engineering Research & Design Institute Co., Ltd., Shanghai 200030, China

Abstract

Edge devices employing federated learning encounter several obstacles, including (1) the non-independent and identically distributed (Non-IID) nature of client data, (2) limitations due to communication bottlenecks, and (3) constraints on computational resources. To surmount the Non-IID data challenge, personalized federated learning has been introduced, which involves training tailored networks at the edge; nevertheless, these methods often exhibit inconsistency in performance. In response to these concerns, a novel framework for personalized federated learning that incorporates adaptive pruning of edge-side data is proposed in this paper. This approach, through a two-staged pruning process, creates customized models while ensuring strong generalization capabilities. Concurrently, by utilizing sparse models, it significantly condenses the model parameters, markedly diminishing both the computational burden and communication overhead on edge nodes. This method achieves a remarkable compression ratio of 3.7% on the Non-IID dataset FEMNIST, with the training accuracy remaining nearly unaffected. Furthermore, the total training duration is reduced by 46.4% when compared with the standard baseline method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3