Author:
Ji Lipeng,Hu Xiaohui,Wang Mingye
Abstract
Locality-constrained Linear Coding (LLC) shows superior image classification performance due to its underlying properties of local smooth sparsity and good construction. It encodes the visual features in remote sensing images and realizes the process of modeling human visual perception of an image through a computer. However, it ignores the consideration of saliency preprocessing in the human visual system. Saliency detection preprocessing can effectively enhance a computer’s perception of remote sensing images. To better implement the task of remote sensing image scene classification, this paper proposes a new approach by combining saliency detection preprocessing and LLC. This saliency detection preprocessing approach is realized using spatial pyramid Gaussian kernel density estimation. Experiments show that the proposed method achieved a better performance for remote sensing scene classification tasks.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献