Maintain a Better Balance between Performance and Cost for Image Captioning by a Size-Adjustable Convolutional Module

Author:

Lyu Yan1ORCID,Liu Yong1,Zhao Qiangfu1

Affiliation:

1. School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Japan

Abstract

Image captioning is a challenging AI problem that connects computer vision and natural language processing. Many deep learning (DL) models have been proposed in the literature for solving this problem. So far, the primary concern of image captioning has been focused on increasing the accuracy of generating human-style sentences for describing given images. As a result, state-of-the-art (SOTA) models are often too expensive to be implemented in computationally weak devices. In contrast, the primary concern of this paper is to maintain a balance between performance and cost. For this purpose, we propose using a DL model pre-trained for object detection to encode the given image so that features of various objects can be extracted simultaneously. We also propose adding a size-adjustable convolutional module (SACM) before decoding the features into sentences. The experimental results show that the model with the properly adjusted SACM could reach a BLEU-1 score of 82.3 and a BLEU-4 score of 43.9 on the Flickr 8K dataset, and a BLEU-1 score of 83.1 and a BLEU-4 score of 44.3 on the MS COCO dataset. With the SACM, the number of parameters is decreased to 108M, which is about 1/4 of the original YOLOv3-LSTM model with 430M parameters. Specifically, compared with mPLUG with 510M parameters, which is one of the SOTA methods, the proposed method can achieve almost the same BLEU-4 scores, but the number of parameters is 78% less than the mPLUG.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3