Author:
Staniūtė Raimonda,Šešok Dmitrij
Abstract
Natural language problems have already been investigated for around five years. Recent progress in artificial intelligence (AI) has greatly improved the performance of models. However, the results are still not sufficiently satisfying. Machines cannot imitate human brains and the way they communicate, so it remains an ongoing task. Due to the increasing amount of information on this topic, it is very difficult to keep on track with the newest researches and results achieved in the image captioning field. In this study a comprehensive Systematic Literature Review (SLR) provides a brief overview of improvements in image captioning over the last four years. The main focus of the paper is to explain the most common techniques and the biggest challenges in image captioning and to summarize the results from the newest papers. Inconsistent comparison of results achieved in image captioning was noticed during this study and hence the awareness of incomplete data collection is raised in this paper. Therefore, it is very important to compare results of a newly created model produced with the newest information and not only with the state of the art methods. This SLR is a source of such information for researchers in order for them to be precisely correct on result comparison before publishing new achievements in the image caption generation field.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference96 articles.
1. Image captioning based on a hierarchical attention mechanism and policy gradient optimization;Yan;J. Latex Cl. Files,2015
2. Deep Visual-Semantic Alignments for Generating Image Descriptions
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献