Process Discovery Techniques Recommendation Framework

Author:

Al-Absi Mohammed Abdulhakim1ORCID,R’bigui Hind2ORCID

Affiliation:

1. Department of Computer Engineering, Graduate School, Dongseo University, 47 Jurye-ro, Sasang-gu, Busan 47011, Republic of Korea

2. Digital Enterprise Department, Nsoft Co., Ltd., No. 407, 14, Tekeunosaneop-ro 55beon-gil, Nam-gu, Ulsan 44776, Republic of Korea

Abstract

In a competitive environment, organizations need to continuously understand, analyze and improve the behavior of processes to maintain their position in the market. Process mining is a set of techniques that allows organizations to have an X-ray view of their processes by extracting process related knowledge from the information recorded in today’s process aware information systems such as ‘Enterprise Resource Planning’ systems, ‘Business Process Management’ systems, ‘Supply Chain Management’ systems, etc. One of the major categories of process mining techniques is the process of discovery. This later allows for automatically constructing process models just from the information stored in the system representing the real behavior of the process discovered. Many process discovery algorithms have been proposed today which made users and businesses, in front of many techniques, unable to choose or decide the appropriate mining algorithm for their business processes. Moreover, existing evaluation and recommendation frameworks have several important drawbacks. This paper proposes a new framework for recommending the most suitable process discovery technique to a given process taking into consideration the limitations of existing frameworks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3