Discrete-Time Incremental Backstepping Control with Extended Kalman Filter for UAVs

Author:

Liu Yanju1,Duan Chengyu1,Liu Lei1,Cao Lijia234ORCID

Affiliation:

1. School of Automation & Information Engineering, Sichuan University of Science & Engineering, Yibin 644000, China

2. School of Computing Science and Engineering, Sichuan University of Science & Engineering, Yibin 644000, China

3. Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Yibin 644000, China

4. Artificial Intelligence Key Laboratory of Sichuan Province, Yibin 644000, China

Abstract

In this study, a discrete-time incremental backstepping (DTIBS) controller with an extended Kalman filter (EKF) is proposed for unmanned aerial vehicles (UAVs) with unknown actuator dynamics. The Taylor series and an approximate discrete method are employed, transforming the second-order continuous-time nonlinear system into a discrete-time nonlinear plant with an incremental input form. The incremental control laws are designed using the incremental nonlinear dynamic inversion (INDI) method and the time-delay control (TDC) method. The TDC is introduced to design the control law, eliminating the need for prior knowledge of the control effectiveness matrix involving some unknown aerodynamic coefficients. In addition, the airflow angle and body rotation rate are selected as key system states, and the EKF is used to design a state estimator to estimate the local state of the small unmanned aerial vehicle closed-loop flight control system under strong noise conditions. The effectiveness of the DTIBS control method with EKF is verified through numerical simulation. The results show that the proposed method can effectively estimate the state under the typical noise characteristics of low-cost sensors, and the closed-loop control systems has good tracking performance and can quickly and effectively track sudden commands.

Funder

Industry-University-Research Innovation Fund of China University

Sichuan Science and Technology Program

Graduate innovation fund project of Sichuan University of Science & Engineering

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3