Decentralized UAV Swarm Control: A Multi-Layered Architecture for Integrated Flight Mode Management and Dynamic Target Interception

Author:

Xia Bingze1ORCID,Mantegh Iraj2ORCID,Xie Wenfang1ORCID

Affiliation:

1. Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada

2. Aerospace Research Centre, National Research Council of Canada, Montreal, QC H3T 2B2, Canada

Abstract

Uncrewed Aerial Vehicles (UAVs) are increasingly deployed across various domains due to their versatility in navigating three-dimensional spaces. The utilization of UAV swarms further enhances the efficiency of mission execution through collaborative operation and shared intelligence. This paper introduces a novel decentralized swarm control strategy for multi-UAV systems engaged in intercepting multiple dynamic targets. The proposed control framework leverages the advantages of both learning-based intelligent algorithms and rule-based control methods, facilitating complex task control in unknown environments while enabling adaptive and resilient coordination among UAV swarms. Moreover, dual flight modes are introduced to enhance mission robustness and fault tolerance, allowing UAVs to autonomously return to base in case of emergencies or upon task completion. Comprehensive simulation scenarios are designed to validate the effectiveness and scalability of the proposed control system under various conditions. Additionally, a feasibility analysis is conducted to guarantee real-world UAV implementation. The results demonstrate significant improvements in tracking performance, scheduling efficiency, and overall success rates compared to traditional methods. This research contributes to the advancement of autonomous UAV swarm coordination and specific applications in complex environments.

Funder

National Research Council of Canada

NSERC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3