Affiliation:
1. Hubei Key Lab of Modern Manufacture Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
Abstract
To make the snake robot crawl quickly along the high-voltage cable, this paper employs the Simulated Annealing Algorithm (SAA) to find the optimal step size for the spiral-winding gait of the snake robot and improve its crawling speed along the high-voltage cable. First, a spiral-winding gait for the robot is designed based on the configuration of the snake robot and the crawling environment along the cable. Next, the double-chain Hopf oscillator is used to generate the spiral-winding gait for the snake-like robot. After that, based on the snake robot’s position, the SAA is employed to improve the crawling speed of the snake robot by finding the optimal step size of the spiral-winding gait. Finally, CoppeliaSim 4.0.0 software is used to analyze the optimization effect of the speed of the snake robot crawling along the cable. The results highlight that the maximum crawling speeds of the snake robot are 0.8868 cm/s, 0.8843 cm/s, 0.8598 cm/s, and 0.7971 cm/s, which are 18.01%, 8.16%, 11.01%, and 12.16% lower than the maximum speed obtained using the sampling fit method when the cable friction coefficients are 0.3, 0.4, 0.5, and 0.6. These simulation results verify the effectiveness of the optimized control algorithm.
Funder
Key Projects of Hubei Provincial Department of Education
Open Fund of Hunan Provincial Key Laboratory of Intelligent Electricity-Based Operation Technology and Equipment
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering