An FPGA-Oriented Baseband Modulator Architecture for 4G/5G Communication Scenarios

Author:

Lopes Ferreira Mário,Canas Ferreira JoãoORCID

Abstract

The next evolution in cellular communications will not only improve upon the performance of previous generations, but also represent an unparalleled expansion in the number of services and use cases. One of the foundations for this evolution is the design of highly flexible, versatile, and resource-/power-efficient hardware components. This paper proposes and evaluates an FPGA-oriented baseband processing architecture suitable for communication scenarios such as non-contiguous carrier aggregation, centralized Cloud Radio Access Network (C-RAN) processing, and 4G/5G waveform coexistence. Our system is upgradeable, resource-efficient, cost-effective, and provides support for three 5G waveform candidates. Exploring Dynamic Partial Reconfiguration (DPR), the proposed architecture expands the design space exploration beyond the available hardware resources on the Zynq xc7z020 through hardware virtualization. Additionally, Dynamic Frequency Scaling (DFS) allows for run-time adjustment of processing throughput and reduces power consumption up to 88%. The resource overhead for DPR and DFS is residual, and the reconfiguration latency is two orders of magnitude below the control plane latency requirements proposed for 5G communications.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference43 articles.

1. 5G New Radio: Waveform, Frame Structure, Multiple Access, and Initial Access

2. Waveform and Numerology to Support 5G Services and Requirements

3. Exploring 5G Coexistence Scenarios Using a Flexible Hardware/Software Testbed—Application Notehttps://literature.cdn.keysight.com/litweb/pdf/5992-1917EN.pdf

4. What Will 5G Be?

5. FPGA Dynamic and Partial Reconfiguration

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3