Enhancing Multi-Class Attack Detection in Graph Neural Network through Feature Rearrangement

Author:

Le Hong-Dang1ORCID,Park Minho2ORCID

Affiliation:

1. Department of Information and Telecommunication Engineering, Soongsil University, Seoul 06978, Republic of Korea

2. School of Electronic Engineering, Soongsil University, Seoul 06978, Republic of Korea

Abstract

As network sizes grow, attack schemes not only become more varied but also increase in complexity. This diversification leads to a proliferation of attack variants, complicating the identification and differentiation of potential threats. Enhancing system security necessitates the implementation of multi-class intrusion detection systems. This approach enables the categorization of incoming network traffic into distinct intrusion types and illustrates the specific attack encountered within the Internet. Numerous studies have leveraged deep learning (DL) for Network-based Intrusion Detection Systems (NIDS), aiming to improve intrusion detection. Among these DL algorithms, Graph Neural Networks (GNN) stand out for their ability to efficiently process unstructured data, especially network traffic, making them particularly suitable for NIDS applications. Although NIDS usually monitors incoming and outgoing flows in a network, represented as edge features in graph format, traditional GNN studies only consider node features, overlooking edge features. This oversight can result in losing important flow data and diminish the system’s ability to detect attacks effectively. To address this limitation, our research makes several key contributions: (1) Emphasize the significance of edge features for enhancing GNN for multi-class intrusion detection, (2) Utilize port information, which is essential for identifying attacks but often overlooked during training, (3) Reorganize features embedded within the graph. By doing this, the graph can represent close to the actual network, which is the node showing endpoint identification information such as IP addresses and ports; the edge contains information related to flow such as Duration, Number of Packet/s, and Length…; (4) Compared to traditional methods, our experiments demonstrate significant performance improvements on both CIC-IDS-2017 (98.32%) and UNSW-NB15 (96.71%) datasets.

Funder

Korea government

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3