Network Attacks Detection Methods Based on Deep Learning Techniques: A Survey

Author:

Wu Yirui1ORCID,Wei Dabao1,Feng Jun1ORCID

Affiliation:

1. College of Computer and Information, Hohai University, Nanjing, China

Abstract

With the development of the fifth-generation networks and artificial intelligence technologies, new threats and challenges have emerged to wireless communication system, especially in cybersecurity. In this paper, we offer a review on attack detection methods involving strength of deep learning techniques. Specifically, we firstly summarize fundamental problems of network security and attack detection and introduce several successful related applications using deep learning structure. On the basis of categorization on deep learning methods, we pay special attention to attack detection methods built on different kinds of architectures, such as autoencoders, generative adversarial network, recurrent neural network, and convolutional neural network. Afterwards, we present some benchmark datasets with descriptions and compare the performance of representing approaches to show the current working state of attack detection methods with deep learning structures. Finally, we summarize this paper and discuss some ways to improve the performance of attack detection under thoughts of utilizing deep learning structures.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3