Simulated Sensor Based Strategies for Obstacle Avoidance Using Velocity Profiling for Autonomous Vehicle FURBOT

Author:

Masood KhayyamORCID,Molfino ReziaORCID,Zoppi MatteoORCID

Abstract

Freight Urban Robotic Vehicle (FURBOT) is an autonomous vehicle designed to transport last mile freight to designated urban stations. It is a slow vehicle designed to tackle urban environment with complete autonomy. A slow vehicle may have slightly different strategies for avoiding obstacles. Unlike on a highway, it has to deal with pedestrians, traffic lights and slower vehicles while maintaining smoothness in its drive. To tackle obstacle avoidance for this vehicle, sensor feedback based strategies have been formulated for smooth drive and obstacle avoidance. A full mathematical model for the vehicle is formulated and simulated in MATLAB environment. The mathematical model uses velocity control for obstacle avoidance without steering control. The obstacle avoidance is attained through velocity control and strategies are formulated with velocity profiling. Innovative techniques are formulated in creating the simulated sensory feed-backs of the environment. Using these feed-backs, correct velocity profiling is autonomously created for giving velocity profile input to the velocity controller. Proximity measurements are assumed to be available for the vehicle in its given range of drive. Novelty is attained by manipulating velocity profile without prior knowledge of the environment. Four different type of obstacles are modeled for simulated environment of the vehicle. These obstacles are randomly placed in the path of the vehicle and autonomous velocity profiling is verified in simulated environment. The simulated results obtained show satisfactory velocity profiling for controller input. The current technique helps to tune the existing controller and in designing of a better velocity controller for the autonomous vehicle and bridges the gap between sensor feed-back and controller input. Moreover, accurate input profiling creates less strain on the system and brings smoothness in drive for an overall safer environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3