Modeling Pedestrian Detour Behavior By-Passing Conflict Areas

Author:

Ning Qingyan,Li Maosheng

Abstract

In the process of walking, most pedestrians prefer to choose the shortest path, which requires passing through the conflict area. However, in the case of high crowd density, 5–20% of the total population will choose to follow the pre-planned route before walking or during the initial period of the trip to bypass the conflict area. Aiming at reproducing this detour behavior phenomenon, an extended social force model (SFM) is proposed according to a three-layer pedestrian simulation framework. This model not only fully considers the choice of detour mode, but also contains the avoidance and game behavior at the conflict point. At the strategic layer, a detour mode selection model based on the Logit model is established considering the pedestrian starting time and detour angle, to distinguish between the two groups of pedestrians who follow the pre-planned route and those who repeatedly adjust the route during the trip. Then, the path decision based on visual perception density at the tactical layer and the Voronoi-based SFM at the operational layer are combined to guide the specific movement of the two types of pedestrian groups. A series of evaluation indexes such as the central density, the mean local density, and detour level is selected, and Kolmogorov–Smirnov (K-S) test and dynamic time warping (DTW) method are used to evaluate and compare the scores of each index of different models. The results show that the model can improve the existing pedestrian detour simulation model to a certain extent. In sum, the travel time score, the detour level, and the mean local density score respectively increase from 0.71 to 0.81, 0.46 to 0.81, and 0.39 to 0.48, which indicates a significant improvement in walking performance.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3